Impact Evaluation of the MCC-Funded Rural Water Supply Activity (RWSA) in Nampula, Mozambique

Ralph Hall (Co-PI), Virginia Tech
Jenna Davis (Co-PI), Stanford University
Eric Vance, Virginia Tech
Emily Van Houweling, Virginia Tech

February 7, 2014

Rural Water Supply Activity (RWSA)

Installation of 600
 handpumps in rural
 communities across the
 provinces of Nampula (358)
 and Cabo Delgado (242)

 Installation of 8 small scale solar systems in Cabo Delgado

The objectives of the RWSA, as stated in the Compact, are to increase beneficiary productivity and income through:

- Time savings
- Reducing water-related illnesses (diarrhea, dysentery, etc.)

Impact Evaluation of Rural Water Points Installation Program (RWPIP) in Nampula

The water committee received training on:

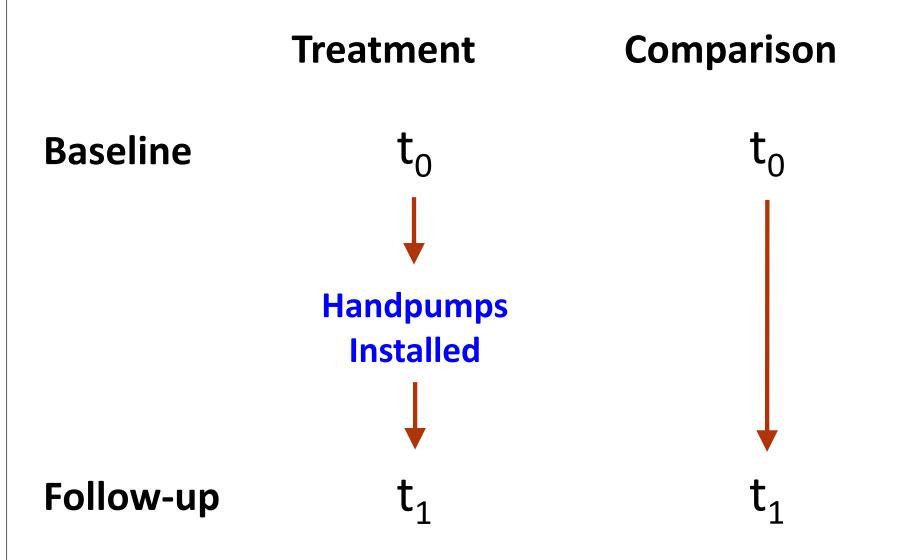
Handpump operation and maintenance

 Hygiene and sanitation (PHAST or CLTS)

PHAST = Participatory Hygiene And Sanitation Transformation

CLTS = Community Led Total Sanitation

Research Approach


Principle Objective of Impact Evaluation

- Impact evaluations seek to provide confident causal inference about the link between an intervention and outcomes
- Difficulty is determining what would have happened to the individuals/communities of interest in absence of the project
- Our Task: Identify the impacts of the installation of handpumps in rural communities in Nampula from all other confounding factors

Research Approach

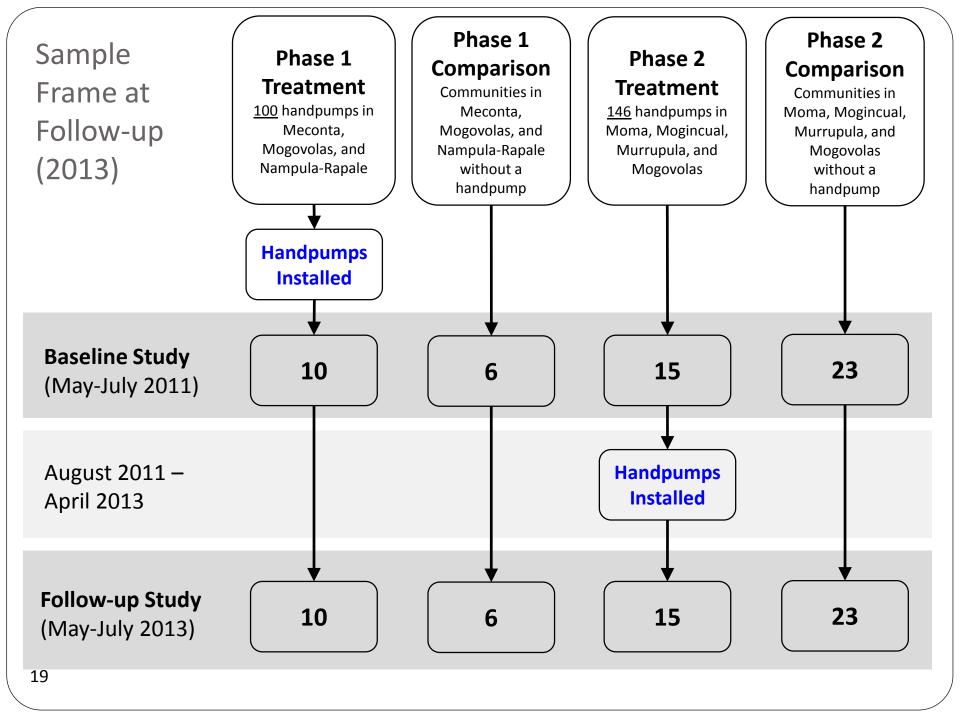
- Develop Panel Data: Compare observed changes in the outcomes for a sample of participants and nonparticipants
- Key Assumption: In the absence of the program, communities selected into the participant and nonparticipant groups would be changing at the same rate

Research Design for Phase 2 Communities

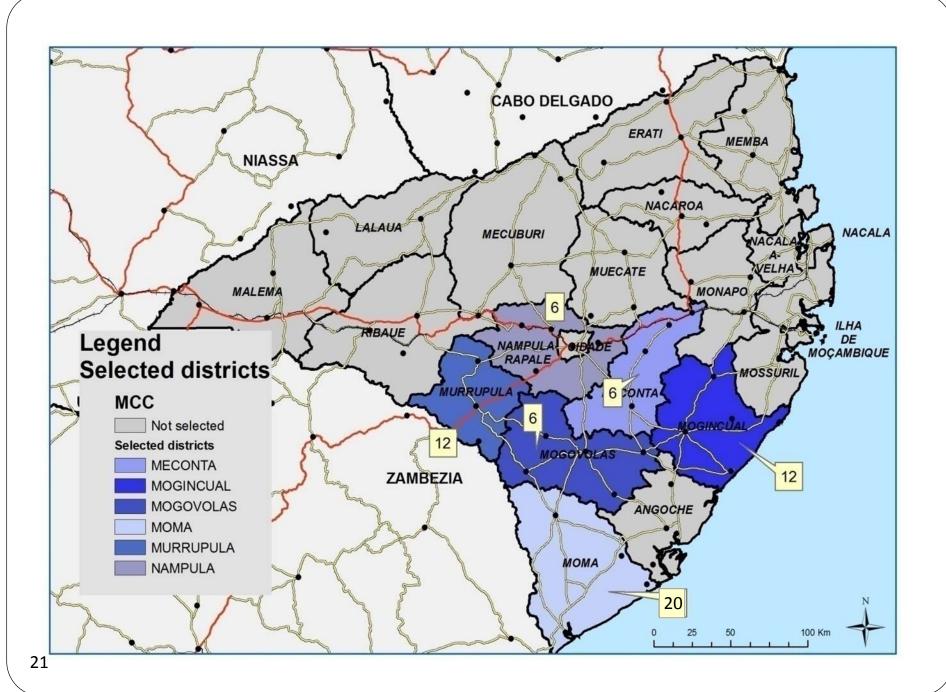
Selection of Treatment Communities

- Treatment communities were randomly selected from the communities included in Phase 1 and 2 of the Rural Water Points Installation Program (RWPIP) in Nampula
 - <u>Phase 1 Districts</u>: Meconta, Mogovolas, and Nampula-Rapale
 - Phase 2 Districts: Moma, Mogincual, and Murrupula

Selection of Comparison Communities


Visited District Office

- Informed District Government of impact evaluation study
- Obtained permission to undertake the study


Visited Localidade

- Informed Localidade Authority of impact evaluation study
- Obtained permission to undertake the study
- Developed list of potential comparison communities with the Chefe de Localidade
 - Dry communities were excluded
- The Chefe de Localidade randomly selected the comparison communities (one for each treatment community in Localidade)

Final Sample Frame

	Community Classification	Number of Communities in Group	Number of Communities by District
Phase 1	Treatment	10	4 Meconta 3 Mogovolas 3 Rapale
	Comparison	6	2 Meconta 1 Mogovolas 3 Rapale
Phase 2	Treatment	15	8 Mogincual 3 Murrupula 2 Mogovolas 2 Moma
	Comparison	23	4 Mogincual 8 Murrupula 1 Mogovolas 10 Moma

Sample Validity

- Following the baseline study:
 - 9 treatment communities became comparison communities
 - 8 comparison communities became treatment communities
- ANOVA test comparing the overall difference in means between treatment and comparison communities at baseline showed that for 13 of 15 key variables, the differences were not statistically significant

Data Collection

Data Collection Activities (RWSA)

Activity	2011 Baseline Study	2013 Follow-up Study
Household Surveys	1,579 (54 communities: 27 treatment; 27 comparison)	1,826 (62 communities: 32 treatment; 30 comparison)
Water Committee/ Leader Interviews	54	31
Water Sampling	11 communities (39 community water sources and 259 household containers)	11 communities (32 community water sources and 873 household containers; water source variability tested in 4 communities)
Handpump Observations	NA	17 (17 communities)

73% of the households interviewed during the baseline study were surveyed again in the follow-up study

Fieldwork Preparation

- Household surveyors and water quality testing team members were trained for 2 weeks
- A pilot study was undertaken to test instruments and fieldwork protocols

Fieldwork Preparation

- Following pilot surveyors were retrained and instruments/ protocols were revised
- Three household surveying teams consisted of:
 - 1 team leader
 - 3 household surveyors
 - 1 driver

Fieldwork Preparation

 Stanford-VT-WE Consult team supported the water sampling team (consisting primarily of Universidade Lúrio students) in the field and laboratory work

Household Survey Teams (in field)

Household Survey

- Household surveys undertaken using PDAs
- Data were cleaned during fieldwork
 - Enumerators were provided with feedback on their data entry errors and outliers were checked

Feedback dramatically reduced the number of recurring

errors

 Summary data were sent to the MCA/MCC every two weeks during fieldwork

Respondent/ Household Characteristics

	Baseline		Follow-up	
	Mean	Median	Mean	Median
Age of survey respondent	39.6	38	39.7	37
% female	38%	_	44%	_
% literate	32%	_	32%	_
Number in household	4.2	4	4.2	4
Number of children < 5	0.7	1	0.7	1

Water Sources Used by Households

78% of the households surveyed in the **treatment communities** reported using a handpump

Phase 2 Treatment – Percent of Households Using Source and Percent of Total Water Collected from Source

	% of HHs Using Source	
	Baseline Follow	
Handpump	9%	78%
Unprotected Well	85%	21%
River/Lake	16%	9%

The water sources used by households in the comparison communities remained relatively unchanged from the baseline to follow-up study

Phase 2 Comparison – Percent of Households Using Source and Percent of Total Water Collected from Source

	% of HHs Using Source	
	Baseline Follow-Up	
Handpump	10%	2%
Unprotected Well	78%	65%
River/Lake	15%	35%

Handpump Use

Water Committee Estimate (n=28)	Value
Median number of people using the handpump in the dry season (Aug-Nov)	391
Median number of people using the handpump in the wet season	176

Handpump Observation (n=17)	Value
Average number of water collectors per hour	6
Average number of water collectors per day (8 hours)	48
Average number of trips per household	2.3
Estimated number of people served by the handpump	88

Water Consumption

All Sources and Improved Sources

The installation of the MCA handpumps are associated with an insignificant **2.5 LPCD** increase in **median water consumption** (from all sources) (p<0.1)

Phase 2 Median Total Liters per Capita per Day (LPCD) (All Sources)

	Number of Communities	Baseline	Follow-Up	Difference
		Mean of Median LPCD	Mean of Median LPCD	LPCD
Treatment	15	17.2	19.5	2.3
Comparison	23	18.5	18.3	-0.2
			Difference in Differences	2.5

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 _ 0.05>p<0.10

p < 0.001 = very strong evidence that there is a difference
between treatment and comparison</pre>

0.001 < p < 0.01 = strong evidence that there is a difference ...

0.01 < p < 0.05 = evidence that there is a difference ...

0.05 that there is a difference ...

The installation of the MCA handpumps are associated with an **15.1 LPCD** increase in **median water consumption** (from **improved sources**) (p<0.001)

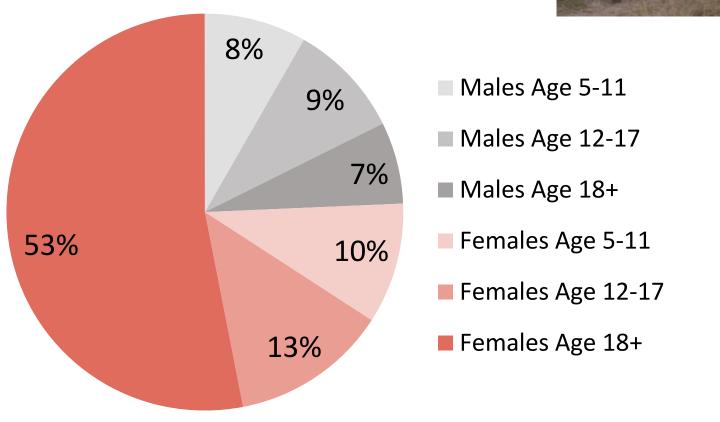
Phase 2 Median Total Liters per Capita per Day (LPCD) from *Improved Sources*

	Number of Communities	Baseline	Follow-Up	Difference
		Mean of Median LPCD	Mean of Median LPCD	LPCD
Treatment	15	0.0	15.1	15.1***
Comparison	23	1.8	0.2	-1.6
			Difference in Differences	16.7***

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 _ 0.05>p<0.10

In treatment communities, 3 out of every 4 buckets of water collected are from an improved source

Phase 2 Median Total Liters per Households per Day (LPD)


		Baseline	Follow-Up	Difference
Phase/ Community	Number of Communities	Mean of Median LPD	Mean of Median LPD	LPD
Treatment (all sources)	15	65.4	76.5	11.1*
Treatment (improved)	15	0.0	58.0	58.0***
Comparison (all sources)	23	75.6	68.5	-7.1
Comparison (improved)	23	7.5	1.3	-6.2

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 | 0.05>p<0.10

Time Spent Collecting Water

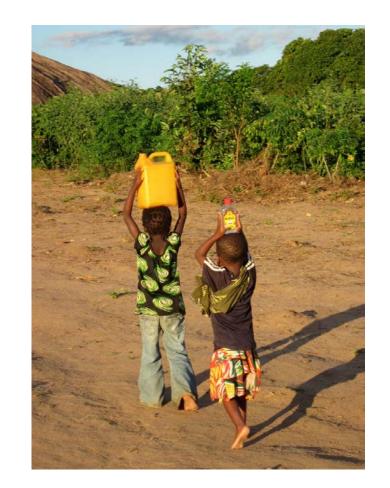
Females account for three quarters (76%) of the total time spent collecting water

Following the installation of the MCA handpumps there was an 88-minute decline in the time households spent collecting water from all sources, but this decline was statistically insignificant

But...

The installation of the MCA handpumps can be associated with a 62-minute reduction in the median roundtrip time to the 'primary' source (p<0.05)

Phase 2 Median Roundtrip Time to *Primary Source*


	Number of Communities	Baseline	Follow-Up	Difference
		Mean of Median Time (Minutes)	Mean of Median Time (Minutes)	Minutes
Treatment	15	161	76	-85**
Comparison	23	137	114	-23
			Difference in Differences	-62*

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 | 0.05>p<0.10

The <u>wait time</u> at the primary source in treatment communities **declined by 41 minutes** relative to comparison communities (p<0.05)

No statistically significant change was found in the <u>one-way walk times</u> to the primary source The installation of the MCA handpump can be associated with a 30% reduction in the total median time females (aged 12 and above) spend collecting water each day

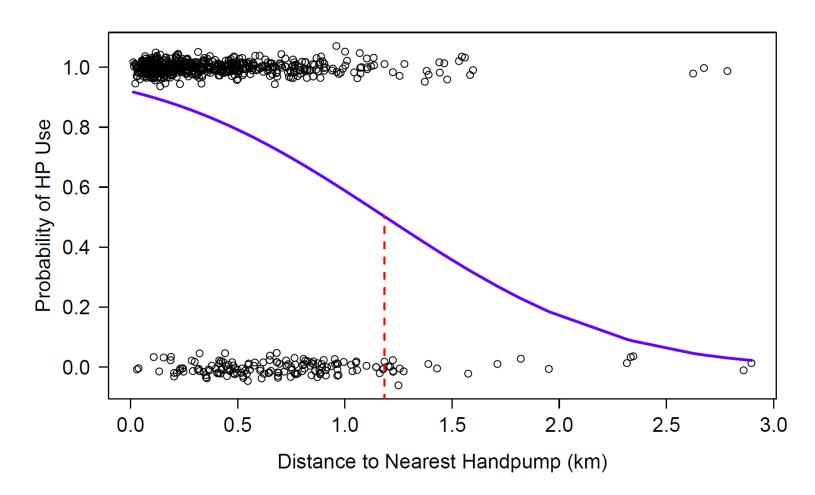
There was no overall reduction in the time males spent collecting water

By comparing the **time** and **water volume** data by demographic groups, the installation of the MCA handpump can be associated with ...

an *increase* in the quantity of water collected by girls and boys aged 12-17 and women aged 18 and above, ...

but a *decline* in the time these groups spend collecting water

The installation of the MCA handpumps can be associated with a 55-minute reduction in the median time to collect 20 liters of water (p<0.001)


Phase 2 Median Time to Collect 20 Liters of Water

	Number of Communities	Baseline	Follow-Up	Difference
		Mean of Median Time (Minutes)	Mean of Median Time (Minutes)	Minutes
Treatment	15	104	62	-42*
Comparison	23	86	99	13
			Difference in Differences	-55***

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 | 0.05>p<0.10

Probability of Using the Installed Handpumps

As distance to the nearest handpump increases, the probability that a household will use the handpump decreases. The distance at which the probability of using a handpump drops below 0.5 is 1.2 km.

Reasons for Not Using a Handpump

 22% of households in the treatment communities do not use the handpump

Reason for Not Using Handpump	Percent of Households (n=170)
Distance	64.7%
Too expensive	28.8%
Don't like taste	14.1%
Closed or broken	7.1%
Too crowded	6.5%
Not permitted to use	5.9%
Conflicts	1.2%

Impact on Schooling

MCA handpumps are associated with a 17.5% reduction in the mean percentage of households stating that water fetching negatively affects the school attendance of their children (p<0.01)

Phase 2 Mean Percentage of Households (HHs) Stating that Water Fetching Affects School Attendance

		Baseline	Follow-Up	Difference
	Number of Communities	Mean % HHs Stating that Water Fetching Affects School Attendance	Mean % HHs Stating that Water Fetching Affects School Attendance	Change in Percentage
Treatment	15	26.7%	7.1%	-19.6%**
Comparison	23	16.8%	14.7%	-2.1%
			Difference in Differences	-17.5%**

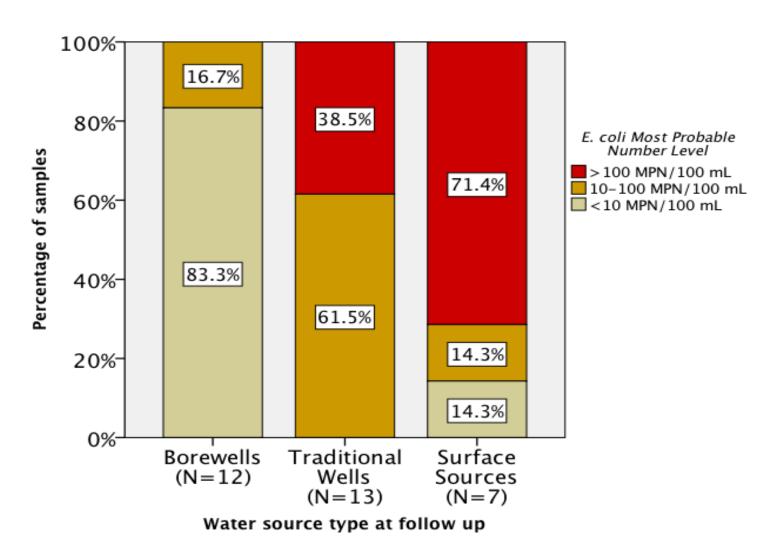
Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 0.05>p<0.10

Satisfaction with Water Supply

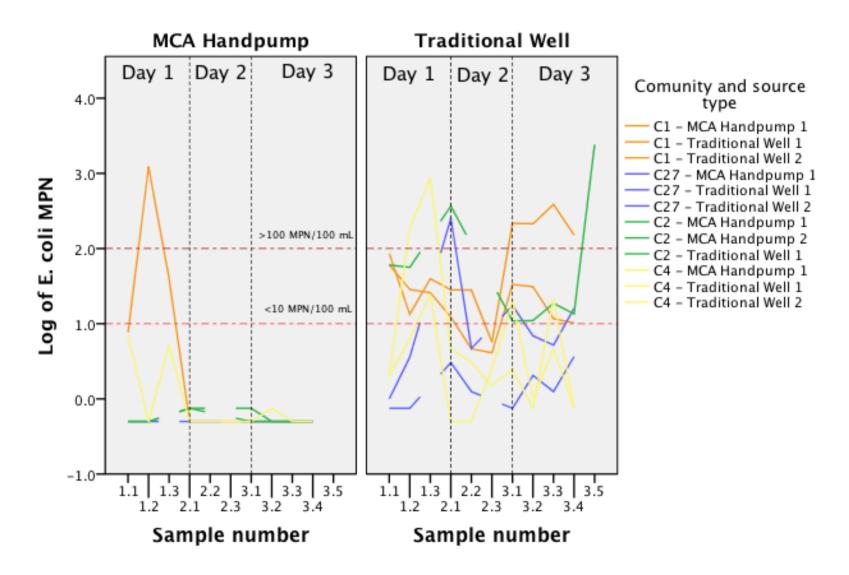
MCA handpumps are associated with a 63% increase in respondent satisfaction with their water supply relative to comparison communities (p<0.001)

Phase 2 Percentage of HH Indicating Satisfaction with Water Supply Situation

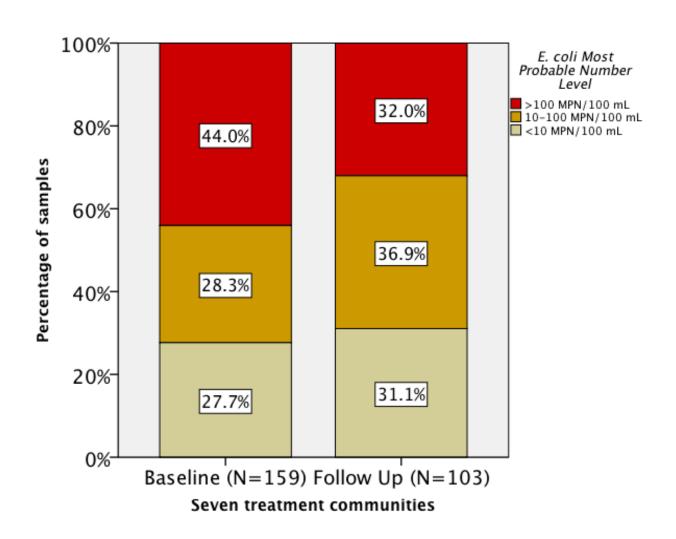
	Number of Communities	Baseline	Follow-Up	Difference
		Mean Percent	Mean Percent	Change in
		of HH Satisfied	of HH Satisfied	Percentage
Treatment	15	22%	79%	57%***
Comparison	23	31%	26%	-6%
			Difference in Differences	63%***

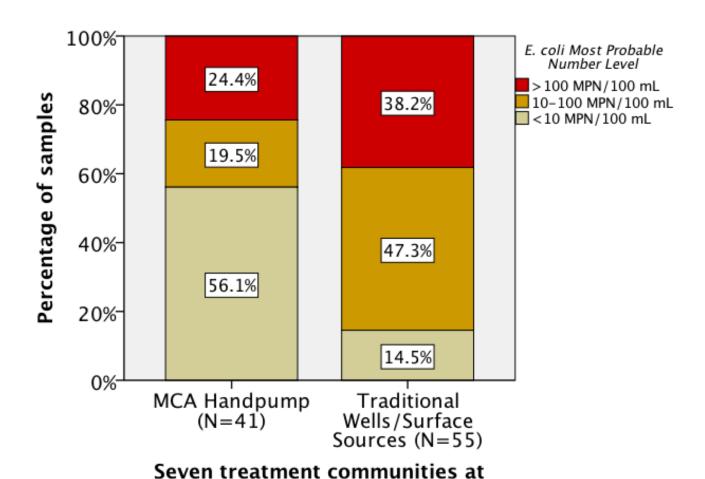

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 _ 0.05>p<0.10

Water Quality Testing


Water Sampling Methodology

- Source and household stored water sampled in 11 communities during baseline and follow-up studies
- Source water quality variability study undertaken in 4 communities (follow-up study only)
- All samples processed tested for fecal indicator bacteria (E. coli results presented here)
- IDEXX protocol used to determine most probable number (MPN) of colony forming units (CFU) of *E. coli* in each sample
 - Results presented in terms of 0-10, 11-100, and >100
 CFU/100mL (MPN) as per older WHO guidelines and current custom among WASH researchers


Water Quality at Point of Collection


Variability of Water Quality at Source

Quality of Stored Household Water by Study Phase: Pooled data from 7 treatment communities

Quality of Stored Household Water at Follow-up: Source-stratified data from 7 treatment communities

follow up

Health, Hygiene, and Wealth

The Installation of the MCA Handpump was not associated with significant changes in:

Health

 Percentage of children with reported symptoms of gastrointestinal or respiratory illness in week prior to interview

Sanitation and Hygiene

 Self-reported handwashing practices, latrine use, or satisfaction with household's sanitation situation

Wealth

Household income and expenditure

However, the percentage of households using a **latrine** did increase by 10% in the treatment communities (p<0.01)

Phase 2 Percentage of Households Using Latrines

	Number of Communities	Baseline	Follow-Up	Difference
		% HHs Using	% HHs Using	Change in
		Latrine	Latrine	Percentage
Treatment	15	23%	33%	10%**
Comparison	23	16%	18%	2%
			Difference in Differences	8%.

Significance codes: *** p<0.001 ** 0.001>p<0.01 * 0.01>p<0.05 _ 0.05>p<0.10

Incomes and expenditures increased in both treatment and comparison communities along with household engagement in agriculture and consumption of meat and fish, pointing to a general trend of economic development in Nampula (or a productive farming season)

Are the Impacts Sustained?

An analysis of Phase 1 treatment and comparison communities revealed no significant changes in the key variable of interest

This suggests that the various impacts observed due to the installation of the MCA handpumps have been sustained for at least two years

It also indicates that there has been no significant increase in benefits over time

Policy Implications from RWSA

Policy Implications

- "Distance" was the number one reason households did not use the handpumps
- It may be necessary to consider alternative approaches to selecting sites for handpump installation, as well as criteria for installing multiple water points or small piped systems
- Future demand responsive programs should include a broader range of water technologies and management models
- Consider alternative approaches to sanitation and hygiene promotion that result in broader reach and better uptake of key messages

Policy Implications

- Local governments may require additional financial support to cover major system repairs
- Follow-up trainings with the water committee may be required in the areas of financial management, and operation and maintenance
- A small stipend or incentive may also be necessary to ensure that the water committees continue to function at a high level over the life of the handpump
- Explore the use of new handpump maintenance models

Small Scale Solar Systems (SSSS)

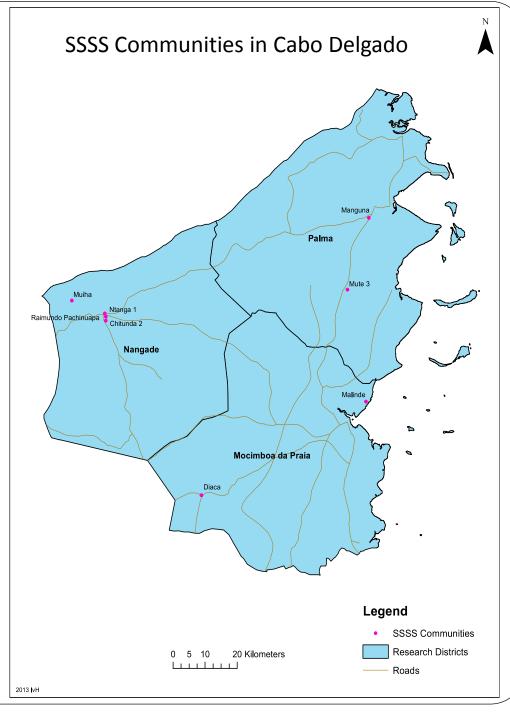
Cabo Delgado

June 18-July 3, 2013
Andy Ismali Buanando and
Valdimira Caetano

Research Questions

- 1. How are the water systems functioning from a financial, technical, and managerial perspective?
- 2. To what extent do the water systems satisfy the water users' needs and preferences?
- 3. What are the prospects for the long-term sustainability of the water systems in Cabo Delgado?

SSSS Technology


- 7.5m tower
- Tank 10 cubic meter
- 3 standpipes, each with 2 taps and water meter
- 6-10, 250 W solar panels
- 72 to 96 V DC 96mm submersible pumps
- Designed to serve 1,500 people

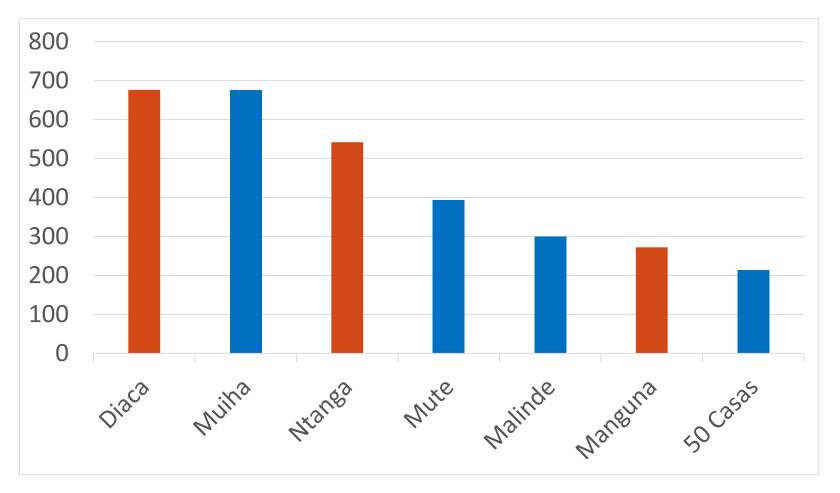
Selection Criteria

- Population greater than 2,000 people
- Borehole yield greater than 3,000 L/h
- Low water coverage rate and unmet demand

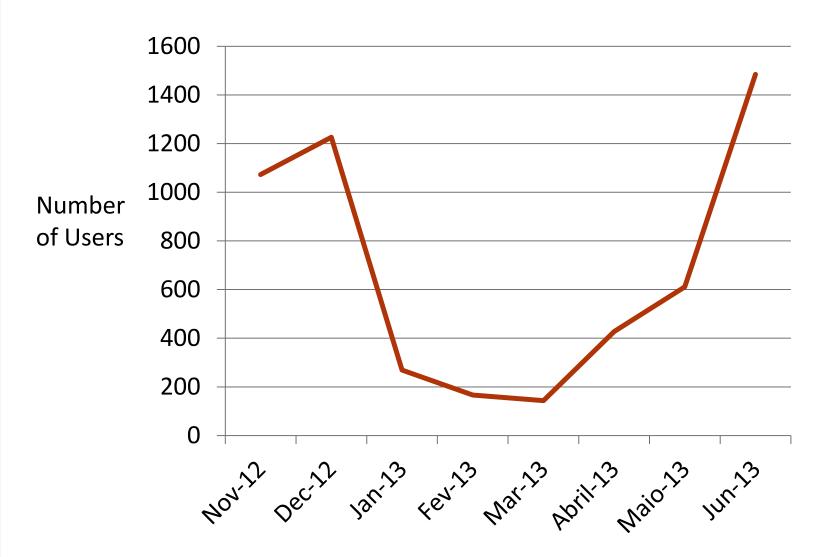
Research Methods

- Interviews with SDPI directors
- Interviews with Cowater animators
- Interviews with water committees
- Interviews with operators

- Focus groups with water users
- Interviews with community leaders
- One day of observation at the SSSS or records of water use


Water Use

- Water used mostly for domestic purposes (some brick making and food preparation)
- Wide variation of water use between systems (213-676 users/day and 2-22 cubic meters/day)
- Highly seasonal usage (highest demand Sept-December)



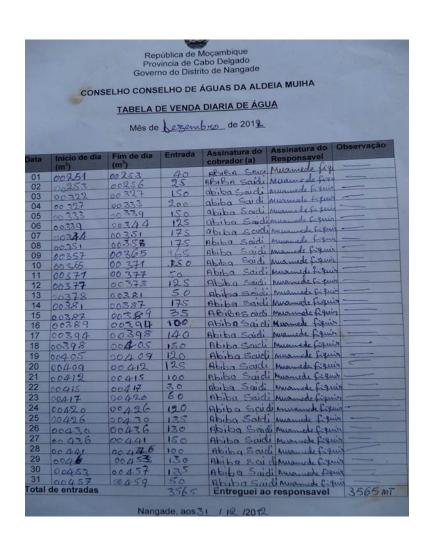
Average Number of People Served per Day by System

- Data from observations (num. of people on observation day)
- Data from records (avg. num of users per day)

Number of Daily SSSS Users in Muiha

Finances

- All communities have positive account balances
- Savings vary between systems (300-55,000 Mt.)
- Average monthly expenses: 3,600 Mt.
- Revenue highly seasonal (example: 900-14,458 in 50 Casas)


Community-Led Management

District	Comm. name	Type of mngt. model	
Nagade	Chitunda	WC and OP	
Nagade	Muiha	WC and OP	
Nagade	Ntanga	WC and OP	
Nagade	50 Casas	WC and OP	
Palma	Manguna	WC only	
Palma	Mute 3	WC and OP	
Mocimboa de Praia	Diaca	WC and OP*	
Mocimba de Praia	Malinde	WC only	

Management Challenges

- No supervision of the operator
- Lack of financial transparency
- Poor communication between the users, operator, and SDPI
- Water users are not well informed
- Lack of technical competence

Technical Performance

- System supplies enough water to meet water demand
- All systems functioning well, except Chitunda and Muiha
- At least one breakdown in 6 of 8 systems
- Technical problems mostly related to electrical issues
- Long duration of breakdowns (45-90 days)
- Two solar panel robberies
- All breakdowns repaired by Cowater / GM Todd Irrigation

User Satisfaction

	Satisfied	Somewhat satisfied	Not satisfied
Type of technology	100%		
Location of taps	87.5%	12.5%	
Water quality	87.5%	12.5%	
Hours system is open	75%	12.5%	12.5%
Price of water	63%	37%	
Reliability	25%	62.5%	12.5%
Management	25%	37.5%	37.5%

Major Sustainability Challenges

- The majority of the communities will have difficulty fixing major technical problems
- Lack of financial transparency
- Lack of communication among management groups
- No supervision of operator

Questions?

Impact Evaluation Team

- Co-Principal Investigators:
 - Dr. Jennifer Davis (Stanford University)
 - Dr. Ralph Hall (Virginia Tech)
- Core Team Members:
 - Dr. Eric Vance (Virginia Tech)
 - Dr. Emily Van Houweling (Virginia Tech)
 - Marcos Carzolio (Virginia Tech)
 - Mark Seiss (Virginia Tech)
 - Kory Russel (Stanford University)
 - Wouter Rhebergen (WE Consult)