
LEVERAGING THE FIELD STATISTICIAN TO ENSURE HIGH QUALITY IMPACT EVALUATIONS

Interdisciplinary Statistical Collaborator

- Applied Mathematician and Statistician
- Over 45 different collaborative research projects
- Taught short courses on survey methods
- Worked remotely on 3 separate impact evaluation projects

Rural Water Supply Activity Project

- Funded by Millennium Challenge Corporation (MCC)
- Located in Nampula
- □ Install 600 clean water sources
- Provide sanitation education
- Evaluate socioeconomic impacts
- Measure water quality
- Disseminate findings

From Traditional Wells to Handpumps

Results of Interest

- Volume of water used
- Access to improved water
- □ Time collecting water
- Child school attendance
- Child health
- Latrine usage
- Income and expenditures
- Water quality

Study Methods

- 1,826 household interviews in follow-up
- Interviewed community leaders
- Interviewed water committees
- □ Tested water quality
- Observed water points
- Enumerator training
- Three enumerator teams
- □ Field statistician

What is a Field Statistician?

- Involved at every step of the research process:
 - Research question development
 - Sample frame selection
 - Data collection
 - Data processing
 - Data analysis
 - Publication

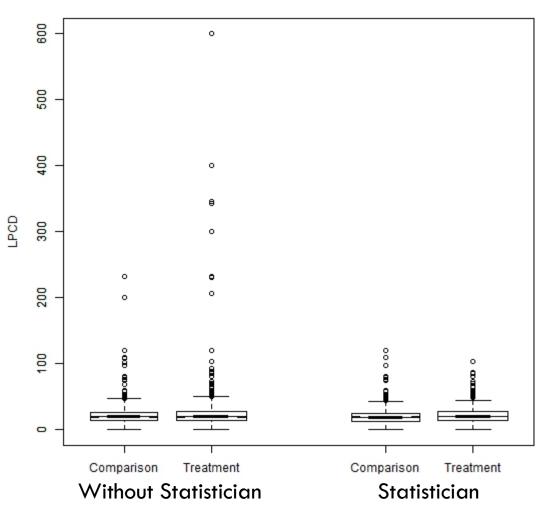
My Role as a Field Statistician...

- Meet with interested parties
- Train enumerators
- Process data as collected
- Manage data
- Identify outliers
- Verify or correct outliers
- Ensure data quality
- Perform analyses in field
- Communicate results

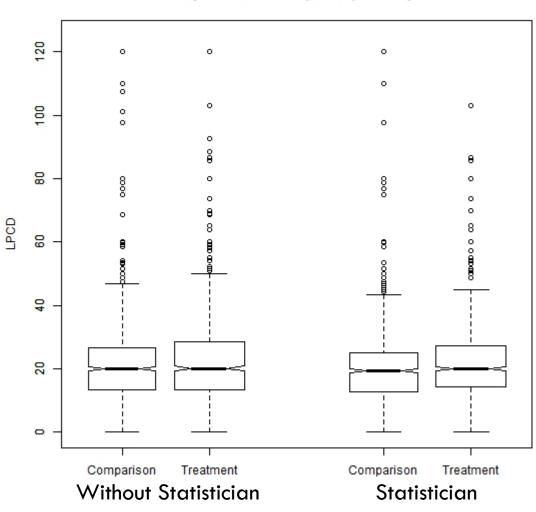
Day-to-Day: Morning

- Drive out to rural villages to meet with enumerators
- Verify or correct outliers
- Retrain enumerators if necessary

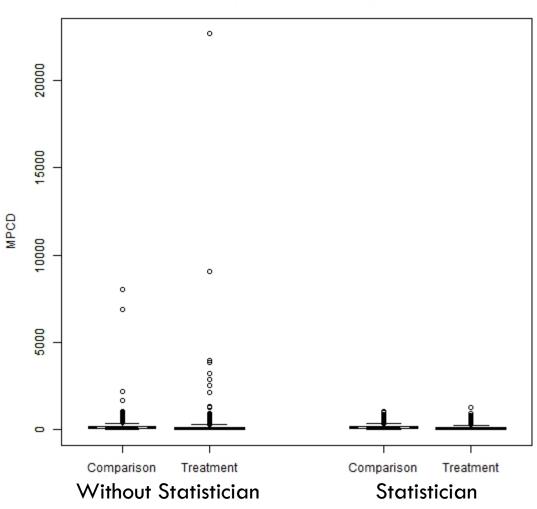
Day-to-Day: Afternoon


- Clean data and prepare error reports
- Analyze currently available data for field reports
- □ Set up tent

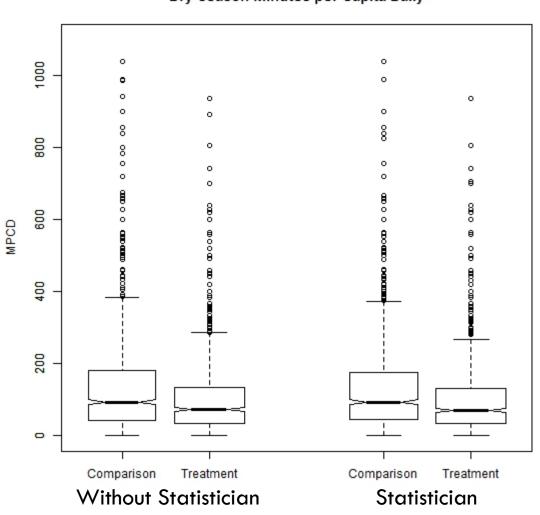
Play with local children



Dry-Season Liters per Capita Daily



Liters per Capita Daily Estimates


	Esti mate	Esti mate	Std. Error	Std. Error	Pr(> t)	Pr(> t)
(Intercept)	22. 4136	20. 4452	0. 9205	0. 4050	<2e-16 ***	<2e-16 ***
HANDPUMP	2. 6540	1.6160	1. 2773	0. 5639	0. 0379 *	0. 00421 **

- Decreased standard errors
- More accurate estimates of effects

Dry-Season Minutes per Capita Daily

Minutes per Capita Daily Estimates

	Estimate	Esti mate	Std. Error	Std. Error	Pr(> t)	Pr(> t)
(Intercept)	157. 756	133. 566	22. 917	4. 402	8. 06e-12 ***	< 2e-16 ***
HANDPUMP	2. 516	- 28. 206	31. 721	6. 126	0. 937	4. 43e-06 ***

- Decreased standard errors
- Significant outcome

Embedding a Statistician in the Field Produces...

- Quality Study Design
- Clean Data in Real Time
- Quick, High-Level Analyses

Expert in the Dataset

